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Abstract. A new problem in scientific computing is the merging of existing sim-
ulation models to create new, higher fidelity combined models. This hasébeen
driving force in climate modeling for nearly a decade now, and fusiergn
space weather modeling are starting to integrate different sub-phytics &n-

gle model. Through component-based software engineering, araiceestipport-
ing this coupling process provides a way to invoke the sub-model thrthegh
common interface which the top model uses, then a coupled model tdona in
higher level model. In addition to allowing applications to switch among linear
solvers, a linear solver interface is also needed for the model couplitigear
solver interface helps in creating solvers for the integrated multi-physiada

tion that combines separate codes, and can use each code’s ndtspearalized
solver for the sub-problem corresponding to each physics submibiis pa-

per presents a new approach on coupling multi-physics codes in teccosped
solver, and shows the successful proof for coupled simulation thrihegmplicit
solve.

Key words: Parallel model coupling; Component architecture and interfaces8par
matrix computation

1 Introduction

Modeling physical phenomena with scientific computing isrgardisciplinary effort.
Many problems in science and engineering are best simuatadet of mutually inter-
acting models; practical physical systems are often madtieaily modeled by compli-
cated Partial Differential Equations (PDESs). Many reaHdsystems involve a com-
plex of multiple physical components. Scientists in manidfierre becoming increas-
ingly interested in coupling models together in order toeambe their understanding. For
example, the Sun-Earth system [29] presents a complexalatgstem of many differ-
ent interconnecting elements: the solar wind transfersfiignt mass, momentum and
energy to the magnetosphere, ionosphere, and upper aterespind dramatically af-
fects the physical processes in each of these physical denidie Community Climate
System Model (CCSM) [7] for global climate models comprisgerdependent models
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that simulate the Earth’s atmosphere, ocean, cryosphaidyiasphere. These systems
interact by exchanging energy, momentum, moisture, ctadrflicxes, etc. For exam-
ple, atmosphere provides to the Earth’s surface downwalidtree fluxes, momentum
fluxes in the form of wind stress, and fresh water flux in therfaf precipitation.
Fusion energy simulation is now integrating codes that rhdifferent physics of a fu-
sion reactor [11, 20]. Most recently the Center for Simuolatf RF Wave Interactions
with Magnetohydrodynamics (CSWIM) [6] works on couplingsiiig codes to model
the interaction between high power radio frequency (RFtedenagnetic waves, and
magnetohydrodynamics (MHD) aspects of the burning plasma.

In various scientific simulation domains, a stand-alone ehedn run with simpli-
fied assumptions on the interaction of the particular domatin the rest of the system.
Merging the existing simulation models to create a new hidjdelity combined model
is a newly emerging theme in the scientific computing comityuBiata exchange based
model coupling such as Model Coupling Toolkit (MCT) [22] aBdrth System Mod-
eling Framework (ESMF) [31] proves that models can be califfieough exchanging
the boundary or initial condition between models. Modeks generally mesh-based,
time-stepping models and may be based upon highly complarminear algorithms
and numerical schemes. The process of model coupling cam occthree different
time scales: tightly coupled models operate at the fastastécale where data are ex-
changed every time step; for slowly varying physics, theptiog needs only be done
every few time steps; the slowest coupling operates oncsipeidation. In this paper,
we won't get into the details of the above complexities, arainty focus on the frame-
work support in which models are to be embedded in order tm foaurt of a coupled
application.

Software component model for scientific computing may helpdupling the mul-
tiple physics codes, such that each code presents the otedatce for the center con-
troller - Coupler. Our previous research work [23, 24, 27] designed a commian-in
face Linear Solver Interface (LISI) which spans multiplgtiperformance computing
(HPC) solver packages. Within Common Component Architec(CCA) framework
CCAFFEINE [8], each package can be encapsulated into a componentiprg\gtan-
dard interface so that easy switching of solver packageshigeed. In this paper, each
sub-physics maps into an individual solver, a coupled msys&écomes a coupled solver.
It demonstrates the idea for coupling multi-physics cotiesugh LISI interface by us-
ing implicit solve method. We first investigate some effaste model coupling; then
present the requirements for solver coupling; after anmadythe design in details, we
provides a CCA coupling approach; finally we give a test caseatidate the solver
coupling idea.

2 Related Work

Some of coupling efforts have been done in the scientific adimg community over

the past 10 years. They have been deployed within their sgidomain [22, 17, 31, 29,
26, 19]. None of them supports the wide variety of discréitiraschemes and numeri-
cal techniques of existing discretization schemes, andoating codes from different

frameworks is still hard.
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Tools such as MCT [22] that tries to provide a common utilitycbuple the cli-
mate models are mainly focusing on the data exchange betiveemodels. The ESMF
[31] defines an architecture for composing complex, couphedeling systems. The
complicated applications are broken up into smaller pi¢cesponents). Components
are assembled together to create an application and trexatiffimplementations of
component can be used in a plug-N-play (plug-N-play) fashithe Space Weather
Modeling Framework (SWMF) [29] aims at providing a flexibledagxtensible soft-
ware architecture for multi-component physics-based espagather simulations. The
SWMF uses layer architecture which is similar to the ESMF. Adsmcket motor
simulation [19] requires consideration of multiple phydicomponents, such as fluid
dynamics, solid mechanics and combustion. Roccom prowdesbject-oriented soft-
ware integration framework for inter-module data exchaage function invocation in
parallel multi-physics simulations. The undergoing CSWB]l project is focusing on
the interaction between high power radio frequency (RFtedenagnetic waves, and
magnetohydrodynamics (MHD) aspects of burning plasmasdsuhe batch manage-
ment system and even system to couple the codes.

The above work demonstrates the successful usage in thspgmive domains, but
none of these frameworks has attracted a large user baserowlidely adopted outside
their field of application due to its lack of generality. CC24] has been started to
address this problem, applying component principles detied of whole applications,
so that parallel applications can run both stand-alone atirdather applications within
the framework.

3 Solver Coupling Requirements

Coupled modeling is increasingly necessary to make pregnasnderstanding the sci-
ence of complex physical phenomena. The interaction in ebawed simulation needs
to be addressed by mathematical and physical aspects ofasiomu Combined prob-
lem can be solved by forcing consistent solutions on thefaxtes. The combination is
not trivial because the constituent applications come thigir own meshes, discretiza-
tions and internal data structures, especially in HPC, tta decomposition may be
different.

Component models have been introduced to the module-caupbmmunity re-
cently, and already found themselves well suited for thaireqents. The most promis-
ing approach is to define a standard set of interface furstioat every physics com-
ponent must provide. The interface describes the list aftsiand outputs, and exists
independent of the implementation. Such common interfacepresent in some of the
frameworks mentioned in section 2. Each sub-model needsoigde standard inter-
face to the framework while the framework provides the daizhange interface for
each sub-model to use.

In this section we analyze some of the challenges pertioehgttreatment of com-
bined physics models as a coupled solver in a multi-physgieslation. The invocation
of sub-model is through CCA LISl interface [23]. The targeaidals include those that
have
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— an extensive software base of existing codes which wereasigded to interoper-
ate with other codes.

— an investment in the sub-model software which is too expensi duplicate be-
cause of various reasons such as continuing active usdpgavent, and evolution.
In other words, it is not sufficient to use an earlier releasfeazen version.

— an “awareness” of the other sub-physics, typically by atlyesimplified treatment
of their contributions. For example, they assume that a daryncondition is not
time-variant, or that some averaging is sufficient to reftecttributions from other
sources, or that the constituent physics are not coupled.

— avital need for inter-model interfaces, which require$vaatollaboration between
application and computer scientists. The definition of ¢himgerfaces is ideally a
community effort with broad intellectual support.

— parallelism requirement in the computations.

Through the participated models’ feature, we may absthectriajor requirements
for the solver coupling:

supporting multi-language legacy codes,

providing data exchange sub-model running on the diffesiztof processes (called
MxN problem),

requiring minimal changes for each physic model,

allowing individual code evolvement,

use of model’s native and possibly highly specialized sslve

In the following subsections, we will give detailed expldaas on above requirements.

3.1 Multi-language support

The large scale simulation codes always involve the modidesloped by the different
teams from different institutes. The code may be in diffeoegram languages, par-
allelism paradigms or platform dependability. The CCA [pdpvides HPC language
support, in particular, support for FORTRAN77, FORTRAN@) C++, Java, etc. This
is achieved through Babel [16], a tool relying on the Scfentnterface Definition
Language (SIDL) [21] to express software interfaces in gl@age neutral way. Babel
compiler can generate the appropriate glue code stubs atetehs based on SIDL to
facilitate language interoperability. In turn, CCA supisathe application to run with
components of different languages.

3.2 Data exchange

In a coupled model, the data exchanged by two componénisd A; reside on their
overlap domairf?;;, and in principle each component will have its own discedton of
£2;;. And two components may run on different numbers of proassso that the data
partitioning on the overlap domain may be different. Thisasalled M-by-N problem
in the scientific coupling [12] community. In our design, wedt sub-models as in an
algebraic way, such that we assume that some other compgoaleeady did the data
interpolation and M-by-N data exchange before the couphteyface is called. In our
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current research, we only target on the case when the coopdéls run on the same
number of processors, but in the future, when consideriagther cases, we will take
a look at how to integrate the M-by-N component with our coagpframework.

3.3 Minimal code changes

Existing software integration frameworks typically reguiarge manual rewrites of
existing codes, or specific tailoring of codes written to Bediin the framework. The
resulting special purpose code is not usable outside ofrtmdwork. The easy reuse
of legacy software is one of effort of CCA [14], it minimizelset effort required to

incorporate existing software into CCA environment. A thager of the component
wrapper is added to the legency code, with well defined iaterfthe legency code
becomes a ready to use component. Since the target mod&de @eensive to rewrite,
the above solution makes the minimal code change possible.

3.4 Individual code evolvement

The coupled model should allow each sub-model keep grovsngray as the interface
it provides is unchanged. In a coupled solver, each sub-hpodeides a LISI interface,
only the adapter needs to be updated once the sub-model.grbev€omponent Based
Software Engineering (CBSE) allows individual sub-modelleing without disturbing
other participating sub-models.

3.5 Use of the native solvers

In a PDEs simulation, sometimes the general solver cantigtdolve the discretized
problem due to complex geometry, and mesh shape, and diedtdorm of PDEs.
The resulting linear system may have a very irregular styapsittern, large condition
number, etc., which makes iterative method sucGBMRES, BICGSTAB impossible to
solve it. In this situation, it is hard to use the availabléveppackages. These simu
lations usually write their own solvers, in some way the sphg embodied with the
simulation code. If this model is coupled with other mod#ig, exposed LISI interface
can make the model a special solver component.

While using CCA and LISI to define the coupled solver, the abbegairements can
be satisfied. And when each sub-physics is treated as a sthigaroupled solver idea
can be used in multi-physics coupling.

4 Design of Coupled Solver

In order to analyze the coupled solver, some mathematickgbaund needs to be
demonstrated first. Domain decomposition method receivsilomg revival of inter-
est in the end of 80s and early 90s due to its potential in lgh@mputing [15]. It is a
class of techniques for the solution of PDEs on a domain byirsplsmaller problems
on subdomains. They are particularly useful for solvingyems on irregular domains
and on parallel computers. The key ingredient is the sysfeaquations governing the
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variables on the interface between the subdomains. Theidaeaomposition method
idea can be traced back to Schwarz’s alternating proceturehich existence of so-
lutions to boundary value problems are proved by an itematigolving solutions on
overlapping subdomains. This idea is also widely used inynfiaids of scientific com-
puting. Figure 1 shows these two ideas, and our currentngs&arrows the domain
decomposition idea in a reverse manner.

Whole Domain Model 1 | | Model 2 Model 3

Lo UL

Domain 1 Domain 2 Domain 3

Combined Model

(A) (B)

Fig. 1. (A) Domain decomposition used in parallel computing about 20 years(By&merging
modeling coupling from individual sub-model

4.1 Model Description

To simplify the illustration, we consider two-domain prebi in Figure 2. There are
two overlapping subdomain®; and(2,, the interface between two domains is named
I.

Q1 r

Q2

Fig. 2. Coupled domain

When the domain decomposition method idea is applied to fphitsics coupling,
the domainf2;andf2; can be treated as the different physics simulations, wrobres
the different PDEs, for example. There are two cases for ithielem to be solved

1. when there is no interaction between physics, the digexksystem is solved as:

) = 0] @
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Here A, and A,s are discretized form of each physics on its own domajrand
2o are solution vectors for each physiés,andb, are the right hand side vectors
for each physics simulation.

2. When thinking about coupling two physics codes, a comblimedr system is cre-
ated in Figure 3. Besided;; and A, for each physics, a few new matrices are

Mesh from Physics 1 Mesh from Physics 2

A1l * X1 = bl A22 * X2 = b2

~

Coupling

A22 | A23

A31 | A32 A33

Fig. 3. Multi-Physics Coupling Diagram

introduced through the interaction between two physics:

— Ass represents the linear system for interface nodes, it ischasegyoverning
PDEs used on the interface nodes, it may have its own dizatieth scheme
used or use one of two coupled physics discretization scheivieh is the de-
cision made by two physics simulation codes. Some data mgpeds to be
done on these interface nodes. For example, the grid pdimiseosimulation
may correspond to the mesh of the coupled simulation. Usdalia interpola-
tion and MxN component need to solve this problem as we désitusection
3.

— Ay3 and AT, are the coupling matrices between physics(dnand interface
nodes, generally the interactions between them are synenfietm each side
of point of view, so that the transpose dfi; represents the coupling from
interface nodes to the nodes on the physics dorfrain

— A,z andAl; are the coupling matrices between physissand interface nodes.

— x3 andbs are the solution vector and right hand side vector for therfate

nodes.
A11 O A13 X1 bl
0 Agp Aog | * |22 | = | b2 (2
A,{g Agg A33 I3 b3

Through comparing non-coupling Equation 1 and couplingdfign 2, the system of
linear equations becomes more complex to solve, espeeidlgn each sub-physics
simulation runs in parallel.
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4.2 Solver Methods

In this section, we are investigating two solver methods arisg Equation 2. Al-
though both methods can be used, one is chosen over the oita¢o @ts guaranty on
solver’s convergence.

One of the most popular method on solving Equation 2 is trexradting Schwarz
method [25]. The original alternating procedure descripe8chwarz in 1870 consisted
of three parts:

1. Alternating between two overlapping domains,

2. Solving the Dirichlet problem on one domain at each iterat

3. Taking boundary conditions based on the most recentignlobtained from the
other domain.

This procedure is called the Multiplicative Schwarz praged13, 18]. This algorithm

is therefore quite sequential, since each sub-domain epdit unknowns based on
the other domain’s previous step solution. It may not be &t bandidate for parallel
model coupling. The additive variant of the Schwarz proceds more suitable for

parallel processing, because the subdomains are not dpdati a whole cycle of

updates through all domains are completed [25], and thessubths can be solved
separately and at the same time.

When thinking coupled physics problem in terms of coupled/esplalternating
Schwarz method is one of the options. But this method is slod sometimes not
convergent. There are two key assumptions associated hghical Schwarz method,
and these assumptions are not verifiable from linear algaigaments alone, see [25]
(chapter 13.3). Given a linear system, it is unlikely tha¢ @an analytically establish
that these assumptions are satisfied.

Another way to solve this problem is the Schur complemenhowf30]. The Schur
complement arises naturally in solving (2) by using BlockeGsian Elimination:

G= A33 — A?S * Al_ll * A13 - Ag}i * A2_21 * Agg,

whered is the Schur complement system for solving the interfacesgand~ is much
smaller thand,, and Ass. The solution of interface nodes then can be used to compute
the solution for each physics subdomain. As we mentione@dtian 1, we introduce

the concept oCoupler to capture the interaction between two coupled physicssode
Assume that physics codes know nothing about the couplingxmé, 3 and A>3 which

are only known to the couple€oulpler is an additional program doing extra work
alongside two stand-alone physics simulations.

4.3 Coupled Solver Algorithm

In our approach, we chose the Schur complement method focaupled solver, the
reasons are at two folds: (1) Alternating Schwartz methala® and sometimes not
convergent. It can only couple the systems via their boundanditions; (2) Schur
complement method converges in fewer iterations for anplealsystem and explicitly
account for complex coupling interactions.
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These solution processes can be done with Krylov subspattedsesuch as GM-
RES and BICGSTAB [10], which requires repeated matrix-oeotultiplications. The
algorithm 1 details the solution process.

Algorithm 1 Coupling Algorithm through Schur-complement Method
Initialize:

— subdomain?; computesh; andw; = A7} * b1, returnw, to coupler;
— subdomainf2, computed, andw, = A;; * ba, returnw, to coupler;
— coupler computebs = by — Al * A7 % b1 — ALy x AL + bo

Step 1: Solve5 « x5 = bs: During each iteration, a matrix-vector product is conducteg, (
represents the solution vector:aof from the previous iteration), and steps include:

coupler computess = Ass * x3p
coupler computeg; = A13 * z3p
subdomain?, computesu; = A" * dy
coupler computes; = 3 — A% % w,
coupler computed; = Asz * x3p
subdomair2; computesvs = Ay, * do
coupler computess = 23 — AL * wy

NogaMwhpE

Step 2: Compute

-1

—x1=w1 — A} *Aiz*xx3
=1

— x2=ws — Ay * Aoz x 13

Note that during each iteration, when Schur complementixiatused, five matrix-
vector products are called, and two linear solvers are geploThe algorithm only
requires the solution of problems withy; and A5, which corresponds to solving in-
dependent problems on the subdomains. This means thatecbsplver can leave the
subdomain solve unchanged while adding new functionality m the coupler.

5 CCA Coupling Approach

Component-based software design combines object-odatdsign with the power-
ful features of well-defined interfaces, programming laaggiinteroperability and dy-
namic composability [28]. While component-based design iiislly motivated by
the needs of business application developers, it alsosofieormous potential bene-
fits to the computational science community. The CCA [14] soiware component
model that specially addresses HPC applications. In CCAstftware unit is treated
as a component, each component connects to another contplorergh a collection
of public interface, or ports [1]. CCA employs a providegfsiparadigm in which a
component provides a set of interfaces that other compsmantuse.

In our previous research work, LISI [23, 24, 27] is an effoithin CCA Forum to
identify the common requirements among widely availableCHiparse linear solver
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packages, and abstract a common Application Programmtieddae (API) that spans
them. LISI is designed to facilitate the run time plug-Nypfeom multiple HPC solver
packages. The generic solver interfdis. SparseSolver is deployed as a CCA port
which can be implemented by a solver component and used lilygrmmponent. The
auxiliary interface when a matrix free solver is used is gissented alési.MatrixFree
interface. The component providing this interface willyade a matrix vector prod-
uct functionality, and the component using this interfadélve a solver component of
solving a linear system in a matrix free manner. In order fapsut constructing a cou-
pled solver for the multi-physics coupling simulation, the.BaseSolver is abstracted
from lisi.SparseSolver to support the matrix free solver. This interface only regsii
uses port to provide right hand side vector and get the solutiazkpband the block row

partitioning is assumed in this interface.
LISI BaseSolver Interface

package lisi version 0.2
{
interface BaseSolver extends gov.cca.Port
{
in
in
in
in
in
in

-

initialize(in long comm);

setStartRow(in int startrow);

getStartRow();

setLocalRows(in int rows);

getLocalRows();

setupRHS(

in rarray<double,1> RightHandSide(NumLocalRow),
in int NumLocalRow);

int solve(

inout rarray<double,1> Solution(NumLocalRow),
inout rarray<double,1> Status(StatusLength),

in int NumLocalRow,

in int StatusLength);

- e

5.1 Design Architecture

In section 4, we have analyzed the coupled solver in details its mathematics as-
pect. From the algorithm we present in previous sectiometheust be at least three
components for our CCA design, one for each subdomain phggiculation and one
for the coupler. Since the coupler is also going to solve tleuScomplement system
for z3, we introduce another solver component to solve the Schuomptament sys-
tem in a matrix free manner so that the Schur complementraydtes not have to be
formed explicitly.

Next question we need to answer is what information each coemt should hold
to best simulate the real world coupling situation? In owsigie we treat the coupled
physics simulation as a coupled solver, for two physics eaiains, they should hold
their own linear systemgl;; and A,,, and right hand side vectots andb,. Since
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physics simulation maintains its own application datauits as a stand alone appli-
cation but now providesisi.BaseSolver port. All the coupling information should re-
tain within Coupler component, the information includes the coupling matritwaen
physics subdomain 1 with the interface node$,;, and the coupling matrix between
physics subdomain 2 with the interface nodek s, and the discretization on the inter-
face nodes with its own governing functiorlss. In the real world coupling simulation,
these three matrices must be designed by application daxpért in order to construct
a meaningful combined simulation.

LISI MatVec
Solve X3
MatVec
LISI LIS
Coupler LS| st
LISI Physics on
subdomain 2

LIsI

Physics on
subdomain 1

Fig. 4. Coupling With CCA Components

Figure 4 shows the design architecture for the coupled physinulation, the com-
ponent diagram follows the CCA uses-provides design pgttee arrow means the
calling direction.

— Coupler component has two provides ports: onéiss.BaseSolver to provide the
functionality to the outside application who may treat tlhemled simulation as a
solver; one idViatvec port which provides the matrix vector product for the Schur
complement system when solving. This component also has three uses ports,
and all of them ardisi.BaseSolver ports. These ports are used to get the solution
back from two physics simulation components and one solweponent forrs.

— Physicscomponents on subdomain 1 and subdomain 2, they are bgsical
verted from real world simulation codes to components thhoa provides port
lisi.BaseSolver. Usually a thin layer is implemented on top of the legencyesod
These two components are called once during each iteratithreicoupling algo-
rithm as descripted in Section 4.

— Solvercomponent forzs. It represents Step 1 in algorithm from Section 4. Since
this component has to solve a Schur complement system inrrirae fashion, it
has a uses port dflatVec along with its provides potisi.BaseSolver.
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5.2 Implementation

This design make€oupler as a central hub for the coupling, afthysics compo-
nents andrz_Solver component should run simultaneously to exploit concureeioc
the most in the simulation overall. CCA is communicatiomgarent specification,
which makes it lightweight and simple to use [9]. In our desige choose in the most
intuitive way among several MPI constructions already kndw application devel-
opers, such as MPI communicator groups. Components in the c@@pling run in a
single MPI instance (started by a singtpirun command). The MPI communicator
world needs to be divided into several subgroups as follows:

— algroup and agyroup are MPI communicator groups for Physics component on
subdomain 1 and subdomain 2, respectively. Depending onldmg® each simu-
lation is, these two groups differ in size. And they shouldwerlap to each other,
since two simulations need to run simultaneously.

— a3group is for both Coupler component amg_Solver component. Since every
time Coupler requires froms_Solver, it has to wait for the solution return in a
blocking call manner. It is not crutial to have concurrenejwteen these two com-
ponents. Since thds; is much smaller compared td,; and A, the processes
assigned to Coupler ang _Solver might have number fewer than the Physics com-
ponent. And a3yroup shouldn’t share processes with eithegadup or a2group.

— al3group is the augmented MPI communicator group for botlyanlip and a3yroup,
and a23group is the augmented MPI communicator group for botlgeiip and
a3 group. These communicator groups are used for data passinwgdn Coupler
component and Physics components.

During initialization phase, tw®hysicscomponents load their linear systetn,
and A,s, and the right hand side vectdis andbs, act as a real applicatio@oupler
component loads the coupling informatidns, A3, A3z andbs. Since all the compo-
nents may run on different number of processors, data iipagd into the different
number of chunks. In our design, we tried to avMaN problem [12], so we make
the physics components running on the same number of parsessd the coupler
running on a single processor. But in the real coupling pobhwhen adding thigIxN
component, both coupler and physics components can runyamuamber of processors.
In order to get the solution from subdomain 1 back to the caygblution is produced
within MPI communicator group agjroup, but collected to coupler’s processor through
communicator group algroup. The similar is true for the solution on subdomain 2.

During the solve phas&olver component calls back throudWatVec port during
each of its iteration for solution aof3. During each iteration step, solutions df
and Ao, are needed from physics subdomain 1 or subdomain 2. Theasistédps are
applied as in initialization phase. One different thinghiattnow the right hand side
vector needs to be sent from the coupler to each physics awenpdMPI scatter call is
used within each augmented communicator groups. Also sgnehsonization should
be done for signaling these solving processes such as a@owulgiable indicating
the process starts. Basically physics components arengditi the signal oMatVec
from Coupler. Only if the signal is received, they parti¢gpahe collective calls on
MPI_Scatterv andMPI_Gatherv.
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During the final computing phase, the newly computed safutiom Schur comple-
ment system on3 is used to compute the solution vector for each physics subhido
as indicated in section 4.3. Now the coupling cycle is dowe, physics problems are
solved under the condition that they interact each otheherverlapped domain.

5.3 Combining Multiple Packages

In our implementation, we also want to demonstrate thatipialsolver packages can
be linked together to compose into a new higher fidelity sol®nce in our previ-
ous research [23], we have converted TrilinastAcOO [5], PETSc [3] and SuperLU
[4] into CCA components, they have providbd.SparseSolver port to other compo-
nents to use. Now we need to reimplement those componefitt sviBaseSolver inter-
face, and another new package is added - High Performanceriéliioners (HYPRE)
[2]. HYPRE is a multigrid solver, and Hypre’s@®MERAMG is a algebraic multigrid
solver. Our goal is to demonstrate the interface usage opliogucode, which allows
each code to use its native (specialized) solver. We chdwes@&2TeECOO solver for
our physics simulation on subdomain 1, used tleedBIERAMG solver for our physics
simulation on subdomain 2, and the PEIT®lver as Schur complement solver fgy.
In this way, three widely used solver packages are deplaygether in one application
within a component based multi-physics simulation. Noydhe idea of combining the
multiple solver packages is validated, but also multi-ptg/soupling can be resolved.

6 A TestCase

In order to demonstrate the multi-physics coupling throtighL S| interface, we build
a prototype test problem which may arise in a typical realldvapplication scenarios.
There are two domains both model the following 2-dimendi®REs,

0%u  0%u
D2 + aTJQ =f (3)

with Dirichlet boundary conditions, discretized with fipeint centered finite-difference
scheme om,. x n,, grid. Wheref = (2.0 — 6.0 x x — 2%) x sin(y) and boundary condi-
tionb = = x x x sin(y). Figure 5 shows our test problem, domain 1 sits on the leé sid
with domain boundaryo, 1] x [0, 1], domain 2 sits on the right side with, 2] x [0, 1].
The interface nodes align vertically at= 1 between two domains. And the interface
domain is discretized with one dimensional PDEs. 400 digeé nodes are used along
x- andy- direction, so the linear system order is about 160000. Theeghiscretization
is used for both domains. The test runs on the Linux cluStén in the Computer Sci-
ence Department at Indiana Universi®din has 128 nodes, each with two dual core
AMD Opteron 2.0 Ghz processor and 4GB RAM on each computimtgno

Physics subdomain 1 runs TrilinoszAecOO solver with maximum iteration num-
ber 500 and tolerance df0e~5, the solver method BICGSTAB and preconditioner
method Jacobi are used. Physics subdomain 2 runs HYPRESVMBRAMG solver
with maximum iteration number 30, and tolerancel dfe—°, all other parameters are
set to default. Schur complement system solverforuns Portable, Extensible Toolkit
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m interface nodes n

-

Domainl Domain 2

o
|
)

X

Fig. 5. Test problem setup

for Scientific Computation (PETSc)'s BICGSTAB method witteximum iteration
number 500 and tolerance of0e 5, since it uses PETSc matrix-free method, there
is no preconditioner chosen. The test runs on 9 processgsdomponents for physics

1 and 2 each run on 4 processes, and coupler runs on 1 probest®st repeats for 10
times, and result is average of the runs. Figure 6 shows #terfiof residual from solv-

ing the Schur complement system o5 the residual decreases as the iteration number
increases, and it converges at the iteration number 415. fE8ult demonstrates that
coupled system is successfully solved. Sub-physics on bpbinaolves in 286 itera-
tions with Trilinos solver while sub-physics on domain 2v&d in 5 iterations with
HYPRE solver.

Coupler residual convergence history
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Fig. 6. Test result
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7 Conclusion

In this paper, we demonstrate a new way of coupling multispds/codes through CCA-
LISI. This is the first model coupling approach within CCA, generalize the model
coupling idea through CBSE and treat coupling models as sinaaited solver. We out-
line a flexible approach to creating coupled model by intoddg a new concept - cou-
pled solver. When each sub-physics is treated as a sub-solwetlie coupled physics,
an implicit solve between multiple sub-physics can becowmpled solver. With CCA
[14] technology, each sub-physics is encapsulated as aareenpwith standard inter-
face exposed to other components. It makes coupling edsi@ugh introducing ex-
tra component Coupler. While each sub-physics model still runs separately, they al
talk to Coupler to exchange the coupling information. The paper analyzesdtuire-
ments for a coupled solver, suggests two coupling algorghchcompares them. It also
presents a coupling algorithm design along with its dedaifeplementation through
CCA component framework; Although the tests were conduetéd rather simple
physics models, they nevertheless clearly show the cowgaker in action, and thus
validate the proposed coupling of physics models undeaitegssumptions of data
representation in algebraic form. As a future work, a genegy to represent the cou-
pling information will need to be considered. For exampltadnterpolation needs to
be done by other components when sub-models run on diffatenbers of processes.
Being sufficiently general, the LISI interface, succedgfuked in this work, may be
extended to incorporate new representations of the cauplformation.
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